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On the Existence of Optimal Stochastic céntroh* %’C 7 0? j
v ¢ Cth. 7O

Harold J. Kushner

1. Introduction.

We will prove several theorems whiéh state, under their preacr:l‘bedV
conditions, that 1i there exists 1;‘ stochastic control which accomplishes
& given task, then there is an opt stochastic control. The systems of
concern are governed by the stochastic vector differential equations

ax(w, t) = £(x(w, t), ulw, t))dt fc(x(m, t), u(m, t))az(w, t) (1)

orx

dx(m, t) = 2(x(w, t), “(‘D: t))at + az(w, t) (2)

S
-

vhere x(m, t) i1s an r-dimensioml vector, u(w, t) 1s a vector control,
o(x, u) 1s an rx r mtrix, and z(, *) 1s a vector stochastic process.
In the form (1), z(-, 7) 1s assumed {0 be Brownian motion; ir the form

(2), z(s, *Y 1is g_wﬁ general proceds to be described later. Many
stochastic systens may be put imto the Xorm of (1) or (2), but this will not
be pursued here. The problem will be in stigated with two types of tasks,

or terminal conditions...The first is that \x(m, t) satisfy (with probability

one)
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&(x(w, 7)) = 0 - G

vhere g 1is contimuous, for some random terminal time Tw’ The second
is a terminal condition on the expectation

oEx(w, 7)) =0, ()

wvhere T is a non-random termimal time. (See [1] for examples where the
latter case is of importance.) In both cases, the risk to be minimized by
the optimal control is the expectation

T
o

R(u) = E f o £, (x(@, t), ulo, t)at = Ex (o, T ), (3

vhere T is either the first (random) time that (3) is satisfied or,
for the second problem, T =T, any time that (4) 1s satisfied.,

For the deterministic problem, which has already received substan-
tial attention [2], [3], [4], the question of existence (assuming that there
is one control which accomplishes the desired task) is equivalent to the
question of the closure of a set of attainable states x(t), over all
possible controls u(*). In the stochastic case, the quasfion also reduces
to that of closure of an appropriate set of attainable sample states or of
expectations,

In a well-formulated control problem, not only must the system (1)
or (2), the risk (5), and the target (3) or (%) be given, but also the
tm' of observations or information that is to be available to the controller
must be given as part of the problem statement. The control can be repre-
sented as an explicit function of the observations; e.g., of the form
u(x, t), 1if some components of x(m, t) are observed. ’

.
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In more general cases, values of x{o, 8) and z(o, 8) at '
gseveral instantes of time are awailable at time t. The control will be
a function or functional of these observations. In general, the control
mway be written as u(m, t). The important point is that the optimality of
a control refers to optimality within a specific class of control functions®.

In addition to naming the obselrvations upon which the control 1s to
be based, the stopping rule must also be given; the stopping time must also
be determinable in terms of the available observations only. With target
(3) it 18 assumed that the arguments of g(-) are observable as well as,
perhaps, other information, and that the stopping time 1s the first time
that (3) is satisfied. In general, the stopping time may bave & more com-
plicated dependence on ®, or the past history of x(m, 8), provided that

~ (3) still holds.

2. FExistence Theorems.

' Define the norm of any vector v with components _viai ,

vl = = |V1|- Iet K amd xi be any positive, finite and non-random numbers. .

The abbreviations 8.8.n and v.p.l are used for 'slmost all o' and ‘with
probability one', respectively. £ 15 the space of points o. I(t) 1s the
minimal g-field over which z(*, T}, T $t, is measurable. Define

¥r) = (1) x J(T), where J'(T) 1s the Borel field over the inmterval

[0, T). Since z(*, *) is assumed to be measurable in the pair (o, t)

(see (A4)), it is measurable with respect to %(T), for t & T. The measure
on the sets of X(t) 1s m(dw) for all t, and the measure on the sets of
Z(T) 18 up(dw x at) forall T.

¥ The distinction will not be pursued further, except for the examples of
the theorems. See also discussion in [1], [5] and [6], wbere ve ave
attempted a beginning of a stochastic variatiomal theory, and have Aerived

necessary conditions for optimality (stochastic Euler equations).
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In the proofs, various subsequences of conmtrol functions are de-
termined, each is indexed by n, &and each is & subsequence of the sube
sequence determined previous to it.

It will be assumed throught that

() leye, w1 5 K@+ Bl + )

(a2) I£,(x + &x, u + tu) - £1(x, w)| & K(fiex] + Joul)
(a3) E mx fxlo, )] <= Exlo, ¢) = O,
: t87 :

(A4) z(+,¢) .u measuredle in the pair (m, t), for almost all o.
*3) logles Wl K2+ bl + )
(46) log jfx + B, @ + 20) = oy0x, w1 & K(lex] + Joud).

(A7)  &(*) 1s continuous.

Theorem 1. Assume form (2) and (A1) to (A4) and (AT), and that almost all
sample functions of z(*, ¢) are comtimuous, Let the family of admissible

controls be of the form wu(x, t), where u(e, °) satisfies the uniform
Lipschitz condition

futx + ox, t + 8t) - u(x, t)] 5 K (lexl + fotl) (6)
(o, o)} = K. . (M

Iet the stopping time be the first random time that (3) holds. Iet
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£(x, u) %0 (8)

and let the family of admissible comtrols be further restricted so that,
for any admissidble control, '

B s?<e . ‘ (9)

vhere T is non-random. Then, if there is one control satisfying (6)

such that (3), (8) and (9) are satisfied, W.p.l, then there is an (optimal)
control which absolutely minimizes (5) and such that (3) and (9) hold w.p.l.

Proof. Defins

-a = inf R(u), (10)

where the infimm is over all admissible wu(e, ¢). Thus, there is an in-
finite sequence of controls w'(*, ) such that R(u") = &, ~a wmonotoni-
cally. To prove the theorem, it must be shown that there is an admissible
(s, *) such that R(u) = a, and (3), (8) end (9) are satisfied w.p.1.}

Note first that, under (A1) to (A 4, (6) and the continuity of
z(w, ¢), for a.a.w, there 1s a unique continuous solution to (2), for s.aw,
such that

E mx ko, )] 5K, <=, | (11)
ts?T

for any finite T. Owing to (6), K, does not depend upon the particular
u(®, °). (See, for example, the remark on p. 286 of Doob [7], and observe

? The proof is more difficult than the deterministic proof [2], since neither

Ton nor x"(o, t) are uniformly bounded in n and @ here.




o

that Doob's conditions on f (his m) are satisfied uniformly in u
here, vy (6)).

Extend the domain of definition of each u™(*, °), if necessary,
so that 1t 1is defined oa all bounded sets. By Ascoli's Theorem, amd (6),
there is & subsequence of the u'(s, ) and a u{-, ¢) satisfyinc (6)
so that

wi(x, t) s ulx, t) _ (12) )
vunifomlyonan'bomﬂedsetc. Ist x(°, *) correspond to u(, *). It

will be shown that u(e, *) is an optimal control.

B (A2),
oo, +) = o, ¢) - o, 4)= t[f(xn(m, o), P, o), ) -

r(iao,o-), S(Eo, 3), 8)) ks .
lex®(m, )]s ,:xr(.uax"(o,‘-_)n + PP 8, o) - W5, 8), o)lias.

Substituting
(=", 8) - u(x, s)i s

"un(xn, ‘)_ - “n(;: o)l + llun(;: 8) - ;(;: o)l

WG, ) - W', o)l s Kl

into (13) yields
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t
b, ) 5 5, [ (e, )0 + a0, 5))an
» 0

~ vhere

s (e, 8) = W (xX(w, ), 8) - U(x(w, s), =)}

from which follows

max [ex™(w, )] = K, f tu'(w, 8)ds (1%)
tET | o

for any finite T, where x’ depends on 7.

Define A(p, T) = (o, t3 |x(w, t)] 5 p, }t s7T) un K(p, T) as the
complement of A(p, T) where T is held fixed. From (14),

!n::!ﬂ& @, t)] s R, + R,

vhere

R =K f bu“(m, t)u{doxdat) -
A(P:r) | ' (15)

R =K f 2w, t)u(do x dt).

Equation (11) implies that

Prob. ( max [x(w, s)] >p) -0
sS8T ‘




e cvrms b 0

-8-

uniformly in the control, as p —+w, Thus u(A(p, T)) 40 as p =,
Since, 1f T 18 finite, R, exists and is finite for any A(p, T), it
tends to zero as u(A(p, T)) +0. Thus, forany € >0, there is a ?,
such that, for p 2p_, we have R, & €. BSince w(x, t) » ulx, t)
uniformly on all bounded sets, for any finite p >0, T >0 and € >0,
is an N (p, T) such that Bu Mo, t) s:/‘rx, for nzx(p, 7) ma for

| (w, t) 1“ A(p, T). Thus, for large n,

E mx Jex™(w, t)] s 2¢.
ts?T

It is nov obvious that there is a subsequence such that

E max Jox"(m, t)] =0 ‘ (16)
ts8"T . . '

v.p.1l. (Take, for example, & leqﬁence of € 03 the subsequence indexed |
by K (p, T) satisfies (16).) Thus there is a further subsequence such
that, for finite T amd wW.p.l, :

mrll&xn(o, t)]l -»o0. (17).

It will be shown next that (3) is satisfied with probability 21-€,
for any € > 0., Define, for a.a.m,

T - 1:: inf rn". (18)

ﬁ;n is also a random time (i.e., does not depend on the future) since the
T:(T) are random times and, by (18),




Do
(o2 T s tj cil:(t). |
Also, vy (9),

rrosﬁ<-.

let B(b)-[a).!l' ST -8), vhere 3 >0, 'nms, for any ¢>o, there
isa T suchth.t ' :

-(n‘(b)) <c;

.Vehsn

8= lg(xn(m, T l")) - g(X(w, T ))I £8) +8,
8, = le(x"(@, T.") - g(w, 7 "))_l
8, = lg(x(w, 7.")) - e(x(@, T ).

Since 3(:(0,!! 2)) =0 w.p.l, S depends on ® but not on n. We
will nov evaluste 8 for each fixed, @ 1n B (8).

I:ISZli.nninfsl'l-linninfBa.

Now fix @ in @ - B (s). (18), there 18 a subsequence T T . Also,
ITm -T] <% except for a finite number of terms. Thus, by the cmtinu:lty

of g(*) anmd of x(w, *), for t & T, lim inf 8, is zero. By the uniform
convergence implied by (17), lim inf 8, is also zero. Thus (3) 1is satisfied
with probability greater than 1 - €. Since € i1s arbitrary, (3) 1s satis-

fied v.p.l.
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We now show that R(u) = @ w.p.leor that
1lim =0
e

Q - n;:on(o, ro")- EX (o, ™)

Since 1lim R(u®) = g we have Lin Q0 % 0. Let
n . n

Qn_g".n'.'an

Q" = Ex .%o, T ")- EX (@, ")
Q" = EX (a, rm”)- n:':'o(t_n. 1;,)-

Take a subsequence so that both Ex (m,!l.' %) ana Ex(o,! %) converge

monotonically. Since x(m,! )IO, vamyspplyhtou'lu-m
obtain

1 [%,m, 7, (e = [ 11n 1nf % (n, T,"n(a).

Since fo(x, u) 0, X (o, *) 1s nondecreasing in t. It 1s also con-
tinuous at all finite t. Since Ijm inf T " <w w.p.1, ve have

lim inf X o(m, Ton) = 'x'o(o, To) V.p.l. Thus for sufficiently large n,
n : _

'ql" ao.‘

W.P.l. llow, if we can show that there 1s a sulsequence such that

lim Q’l =0 Ww.p.l., we will have proved that Q=0 wp.l.
n



e

o T

w]lle

it Tm" vere unifornly bounded in n and ®, then lim Q" =0
by virtue of (16). Since T " 1s not unifornly bownded, ve take the
following approach. Ilet BX(T) = (o2 -mo" >T). Ry a standard inequality
(see [ 8 1, p. 157)
ET ® %
[++]
n(B*(T)) ol ¥

Thus, there is & T, <® such that

a(#(z,)) 5 2™

for any n. Iet 51 be a sequence of positive mnbers' tending to.zerxo.
By (16) we may choose a subsequence of the W (*,°) vhich we will index by
i, so that '

ts?

Eomx x} (@, t) = X (o t)] <8
1 R

Define B = U B'(r,), smd T, as tte complememt of B,. W have
: § 4

l(B‘ ) < €.

Vhen © 1sin B, whave T'sT, forell 1. Also

f |x°1(¢n, 'J.'Oi) - x (o, Tmi) |m(aw) <8, »0
B |
C

v.p.l. Thus lim q1° « 0 with probability %1 - €. Since ¢ is arbi-
trary, mo,l"-o v.p.1, and ve conclude that 1inQ =0 and R(u) =a
VQP.L
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Since f_(x, u) 0, the sample functions X (@, t) are nom~
decreasing functions of time. ILet i’° $ T be the first time that (3)
is satisfied. Since a 1s the minimum possible risk, and it is attained
by stopping at T, 1t will also be attained by stopping at %‘o. Thus,

we have proved that the first time (3) is satisfied is optimum, and the
proof is concluded, ‘

An easy consequence of the proof is a correspbxﬂing resiﬂ.t when the
terminal constraint is a set of expectations. Note that fo £ 0 and the
continuity of almost a1l z{m, °) are mot required.

Corollary, Assume (Al) to (AM) end (A7). Let all admissible comtrols
satisfy (6) end (7). Let the target set be the set of expectations such
that (4) is satisfied, wvhere T 1s non-random and finite. Then if there -
is_one admissible comtrol such that (k) is satisfied, then there is an
admissible optimal control.

‘We state the following theorem for form (1). The proof, although
differing in detail, is essentially the same as the proof of Theorem 1,
and will not be given. z(°, °) is confined to Brownian motion to assure
that the various stochastic integrals exist and have suitable properties.

Thegrem 2. Assume all the conditions of Theorem 1, except let (1) replace (2),
and let z(*, *) be vector Brownian motion. Assume (AS) and (A6). Then,
the conclusions of Theorem 1 hold.
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The existence and uniqueness of solutions to (1) and (2) has not
yet been proved under much more general conditions on u(x, t) than those
of Theorem 1. In this sense, Theorems 1 and 2 represent about the best
attainable result vith the use of the comtrol form u(x, t).

In order to present existence results with other control forms, a
different approach is taken in the sequel, Assume that the informatiom
upon which the values of the control are to depend are observations on
z(°, *), and that almost all sample functions of these observations are
Lebesgue measursble. Without specifying the type of observations further,
it can be sald that there is a sub g-field X (t) C ¥t) vhich 1s the
minimal g-field with respect to which the cbservations at time ¢t are
measurable. There is also & sub g-field ¥ (T) C =T) with sections
£,(t) end ' J(T) for almost a1l t 3T and o, respectively, and with
respect to vhich, the observations, as functions of @ and t, are
meagsurable, : '

A further condition condition that we impose is that any time
interval [0, T] can be divided into half open intervals such that, if s
apd t are in the same interval and s <t, then Z(s)C 5 (t). The
meaning of this condition is simply that, within each interval, the information
available to the comtroller does not decrease with time. That is to say,
that the values of all observations that are available at s are also available
at t. At certain discrete times, however, information may be lost, if
desired; i.e,, the memory may overflow or old information may be replaced,
Iet t <t st;, be ope of the intervals. Then the cbservations at time s,
t, <8 3 t, are measurable with respect to I (t). There are cases vhere
these restrictions may be avoided, e.g,!, vhen u(*, *) 1s a scalar values
control, but this will not be pursued, ’

fhe control form u(w, t) Will be used. It 1s cbvious that:

(A8) A1l admissible u(°, t) and wu(*, °) are measursble with
respect to L (t) amd E(T), for any finite T and t. Also all u(o, )
mnebeagueneasunbh
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We will also require

(A9) 1et u(w, t) take values only in the convex compact set U.
Iet X(°) be a contimwous function and k(U) a convex set. '

The following theorems are also of interest for the reason that ir
ic(r) = ¥(T) and £,(t) = 5(t), then the optima) control in this family
of controls ylelds at least as small a risk as the optimal control of any
other family. There area number of important cases where the control may
be chosen btased on observations on z(*, °) only; e.g., if dz(°, °) = 0,
except at random times determined by a Poisson or otber distribution, when
it takes an impulsive form; or vhen a stochestic process, say sz (*, °),
correlated with the z(*, °) which drives the dynamical eystem is the only
function which is obeerved. '

Thefollowinglmvﬂlhemeﬁl.

Jemmg. Iet the interval [0, T] be divided into finitely many half

open intervals. lLet Z.(s)( Z (t) if s <t and bothare in the sams
interval. let k(*) be continuous and the bounded vector valued function .
v(*, *) measurable with respect to Ec(l'). If there exists one, not
necessarily measurable, function u(e, ) with values in the compact

set U and such that

T, t) = k(u(w, ¢))

almost everywhere, then u(- ’ t) may be defined to be measurable with res-
pect to Z(t).

M. We may confine our attention to a single interval, Under the hypo-
thesis on k(*), u(e, *), U amd 7y(*, ), a theorem of Wazewski [9]
ylelds the existence of a Iebesgue measurable ﬁ(m, *) for each fixed m,
suwch that y(w, t) = k(u(w, t)). If the observations take the same values
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for ®; and @, provided 8 £ t, then ®, snd a, are always in the
same sets of L (s), and r(a;l, 8) = 7(“%’ s) for s £ t. Hence, by
the method of construction in [9], u(ml, 8) = ‘(“‘2’ 8), s &t. Thus
this u(w, t) does not depend upon the future values of the observations
and, hence, at t, 15 measurable with respect to }:c(t).

Theozen 3 Assume (A1) to (AW), (AT) g (a8). 1=t

ax(w,t) = A(t)x(m,t)dt + k(u(o,t))dt + ax(m,t), Q)

ax (m,t) Z a (m,t)dt +k (u(n,t))dt,
J=1

where A(*) is bounded and Iebesgue measurable and k(°) satisfies (A9).
Iet the terminal condition be the set (4) of expectations,’and 1et tie
termimal time of control T be non-random and, for all admissible controls
ot

A
TST<w, - - (20) -

Then, if there exists one admissible control such that (4) holds w.p.l.

aend (19) holds. Then there is an optimal control such that (4) bholds w.p.l.
and (19) holds. '

Proof. Under (A1) to (Ak) and (A8) and (A9), the existence and unigueness
w.P.l. of the solution to (19) for a.a.m 1s a special case of the theorem
in the appendix of [6]. Again, let a = inf R(w), where the infi-um is over
the class of comtrols of the hypothesis of this theorem. ILet u(*, °*) bde
a sequence of controls such that (4) 1s satisfied at T s T w.p.l., and
R(u") = & monotonically decreases to «. We mmst show that there is &

u(*, °) anda T such that R(u) = a and g(Ex{m, T)) = 0 w.p.l.

¥ See remark at the end of the proof.
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Iet ¢(s, t) be the fundamental matrix of the system (19)e By
the hypothesis on A(®), ©(, °) 1s finite, Iebesgue integrable, and
contimwous in both arguments. W have

™, o
Ex™o, T") = E f o(r", £)k(u"(n,t))at + o(T", 0)x{(0)
o .
' ' . (21)
™

+B f o(T", t)az(w, t).

o ‘

Since ¢(s, t) does not depend on the values of =z(+, °), there 1s mo
trouble in defining the last imtegral of (21). Since Ez(m, t) = 0, the last
integral is zero for any finite upper limit of integration. Since g(°)

is continuous, and the value u’(m, t) 1s confined to compact U, and

each k(u'(*, °)) 1s measurable with respect to £ (7), ve bave

T
[ I, a5 1

for some K not depending on n, vhere we define

T-mnmrr‘s§<-.

Thus, there is a subsequence, and a function ¥(°, °) measurable with
respect to 'i;'e('r), such that

X(P(, ) Brle *)
vhere by weak ;:omeggguce we pean

[t o, ))ulaw x at) [ 7@, thutao x av), (22)
A A
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foranysét A in Ee(r).

Next, following the method of Raxin [k], it will be shown that, for
8.8. fixed ® and t, there 1s & number u(w, t) in U such that

7(o, ) = k(ulo, ). (23)

For any set A in 'ﬁc(!l'), (22) and the uniform boundedness of
Ik (u"(@, t))]] and Fatou’s Lemma,yield, for any vector y,

[ 19 yxr(e, e x at) » [ 7t x e
AYE U ‘ YA

z lim j; y'x(uYw,t M(do x at) = j; ¥* o, t ) (dm x at).
n . o

- o——

Since the reverse inequalities hold with glb and lim inf replacing ludb
and lim sup, respectively, we have, for a.a. fixed @ and t,

b y*(k(v(m, t))  y'r(m, t) 2 glb yk(v(o, £)).  (2K)
vevU A veuyU

Redefine v(*, *) on the remaining set of measure zero so that (2k4) nholas
everyvhere, ,

Since U, the range of v(w, t) in (23), 18 a closed convex set,
(24) implies that, for each @ and t, there is a wWw, t) in U such
that (23) holds.

According to the lemma, u(°, *) can be defired to be measurable
with respect to fc(l'). ‘ .

It will now be shown that u(*, *) = u(*, *) and T are the optimal
control and stopping time, respectivefully.
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Iet n index a subsequence swch that T° tends monotonically
to T. lLettirg x(-, °) correspond to u(*, °*), we bave
SR Y %
T ) = 0(,002(0) + [ o(t,0)x(Elw, s + [ ot 0)zmt).  (25)
0 0

Equation (25) bas a unique solution with finite mean w.p.l. Thus, w.p.l.,

N ! .
Ix0,7") - (o, 5 I [ on,) [x(eP(0,4)) - x(Tlore)) s
-0

» - (26)
+ |[B f o(T", t)k(u"(w,t))at] + [IE f o(T", t)az (o, t) |l
T T

The last term on the right of (26) is identically zero. The next to last
term converges to zero since the integmals exist and ™ Te The first
term converges to zero by virtue of the weak couvergence of k(u’(*, *))
to k(u(+, *)). Thus

=, T°) +E(e, T)

w.p.l. Thus, Exon(o, ™) = an-oﬁo(m, T) = . Since g(°) 1is continuwous
g(Fx(m, T)) = O and the proof is concluded.

Remark. A strOnger type of convefgence than the weak convergence argument
used here appears to be necessary to establish convergence of the sample
functions in general (or even of their expectations in the non-linear case)

as was done in Theorem 1. This is the reason for restricting the target

to a set of expectations, ratber than sample functions, and the linear assump-
tion (19). It would be useful to prove whetber or not sample function
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convergence is necessary, in general, in order to satisfy termimal con-

straints on x(w, t).

If u(*, *) is scalar valuéd, then a sequence 4%(-, °) may be
constructed so that u(w, t) = ln inf (@, t) satisfies (23) and
is measurable with respect to ‘fc(T). (See [k], where equation (2.15)

48 valid in the scalar case and may be extended to our case.)

R
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In Theorem L, the assumption that § 1is denumerable allows us
to obtain a convergent subsequence of sample functions and apply the
terminal constraint g(x(m, '1'0)) = 0,

Theorem 4. Assume the hypothesis of Theorem 1 on z(*, *) except let
8 bYbe denumeradble. 0 = {1, ..., n, eee) with P1 >0 the probtability
that o = 4. Assume (1) in the particular form

dx(1, t) = c(x(1, t))at + h(x(1, t))k(u(1, t)at + az(4, t), (27)

vhere c(-) satisfies (Al) and (A2), and h(-) is an r X r matrix satisfy-
ing (A5) and (A6). Iet k(°) satisfy (A9) and let all admissible controls
satisfy (AB) (both of Theorem 3). ILet the terminal time of control be the

first random time that (3) holds and mssume (8) and also that (9) holds for

any admissible control. Then, if there is one control satisfying (A8) such
that (3) and (9) hold, w.p.l. then there is an (optimal) control which a.bsolube_)_.;

minimizes (5), and is such that (3) and (9) hold w.p.l., and the stopping
time is the first time that (3) bolds.

Proof. The proof of the existence and uniqueness of the solutions to (27),
and the property that tbe sample functions are continuous and

sp, mx (s, 9] =2 max belo, O] <o (28)
i ts7?T tsT '

for all finite T, is an easy consequence of the theorem in the appendix of
[61. Iet (-, -) be a sequence of controls such that (3) is satisfied at

" the first time m and R(W") = o® +a = inf R(u). We vill again find &

(e, ) ama T Ceuch that R(W) = @ and the first time (3) is satisfied
is T. Iet %(*, *) correspond to u(*, ¢). Iet &, t) = x"(o, t)
- X(w, t). In fact, it is only necessary to find a u(e, °) anl a T
such that, for some subsequence,




- g

E max |ex®(@, t)] 0 .  (29)
tsE7
mx |ex™(w, t)] -0 (»)
ts2T .

uniformly in n for all finite T w.p.l. The rest of the proof is exactly
the same as the corresponding vart of the proof of Theorem 1 and will not
be given. '

For t> :rm", define u'(w, t) in any convenient way that satisfies
{28) and (A9). Since u(m, t) 1s in the compact set U, and since X(*)
18 continuous, k(u"(w, t)) 1s uniformly bounded in n, @ and t. Thus
for any finite T <there is a subsequence such that '

k(un(m,t)) !’T(Ort)a
vhere, by weak convergence we mean

firPo o x e % [ 1o, thimxar) ()

for any set A in I (T)." r(w, t) 1s thus defined on the open interval
[0, =) for each .

Since the set A, = ((m, t): @ =1, t in B, & linear Borel set
bounded by T} is in 's‘;'c(r), and since p(A;) = p,2(B) >0, where I(B)
is the lebesgue measure of B, we also have the sample function weak con-
vergence, ’

fk(un(m, t))at -’f‘f(@, t)dat (»)
B B

for a1l bounded linear Borel sets B, and all o.

t For t ST U it is not necessary to define ull(m, t). It is only neces=-
sary to satisfy (31) on the restricted space {(w, t): t T )} vhich bas
the finite measure ET,. This approach, involving more detai®s than the one
used above, yields the same result.
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The Iemma proceding Theorem 3 proves the existence of & wu(°, °)
satisfying (A8) and (A9) such tmat

(3w, t) = r(o, t). (33)

u(w, *) 1s thus defined on all compact time sets anl, hence, on the open
interval [0, »). It will next be shown that wu(:, .) 1is the optimm con-
trol. We have

. . .
axn(m, t) = x%o, t) - x(w, t) -fo[c(xn(o), 8)) - c(x(w, l))]ds +

. | | | (%)
S [n(:"(o, $)) - b, a))::.k(u‘(o,'-»a- + QXv),
0 | -

vhere
) = [ G, ) [x(Ple, 5)) - 20, )]s ()
. ,

From (28), and the fact that Py >0, and that h(°) satisfies (A1),
we have

e nn(am, ) 5 K (o) <= (%)
E mx [n(x(a, t))] & Ky <, (3
ts?

for some K,(w) and K5 Now, since h(x(-, °))‘ and h(x(w, °)) are
measurable functions, the weak convergences (3L) and (3) imply that




% (t) =0
| ()
E qmn(t) -0
pointwise in t, t % T. In addition, by virtue of (%) and (37) and

the boundedness of k(°), both %n(t) and E qmn(t) satisfy Lipschitz
conditions in ¢; 1.e.,

llg,"(t) - 9 (t - )] % K, (o)n. (®)

fhus, for t & T, both qmn(t) and E qm“(t) tend to zero uniformly in
t. Bquation (36) and (37) 1wply

::»n - ts‘wmuqmn(t)lvt < Ka(o) <o VeDele

o (vo)
& = swp xl]qmn(t)Vt <o | V.Pele
tsT .
Sov, spplying (A1), (D) amd (10) to (3) rislds, for some K, ,
. | |
llox" (@, )l & f Kfex"(a, o)las + "%,
0 , A
vhich implies ° |
le™(w, ¢) 5 Xg € "¢ : M)
and
E mx & x.,E" ' ' (k2)

ts?T

for eome K and K. Thus (29) and () bold.



2k .

T - lim inf 2 7. (v3)

The remainder of the proof is =xactly as in Theorem 1 and will be
omitted.

The proof of the Corollary follows easily from the proof of the
theorem, and will not be given. |

~ Corollary. Assume the conditions of Theorem k4, except that £ d(x, u)
my take any sign and z(*, ) pmay not be continuwous, and the terminal
condition 1s the set of expectations (4). Also the terminal time is non-

random and bounded by some . Then, if there is one control satisfying

(4) and with a terminal time bounded by ¥, there 1s an optimal control
satisfying (&) and with terminal time bounded by 2. '
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